11,395 research outputs found

    Role of dissolved nitrate and phosphate in isolates of Mesodinium rubrum and toxin-producing Dinophysis acuminata

    Get PDF
    Mesodinium rubrum (as prey) is a critical component, in addition to light, for growth and toxin production by the mixotrophic dinoflagellate Dinophysis acuminata. Little is known, however, about the role that dissolved inorganic nutrients play in this predator-prey relationship and system toxicity. A series of experiments were conducted to investigate the possible uptake of dissolved nitrate and phosphate by (1) D. acuminata starved of prey, (2) D. acuminata feeding on M. rubrum, and (3) M. rubrum grown in nutritionally modified medium. All single-clone or mixed cultures were monitored for dissolved and particulate nutrient levels over the growth cycle, as well as for growth rate, biomass, and toxin production when appropriate. Dinophysis acuminata did not utilize dissolved nitrate or phosphate in the medium under nutrient-enriched or nutrientreduced regimes, in the absence or presence of prey, or during any growth phase monitored. Changes in particulate phosphorus and nitrogen in D. acuminata were instead strongly influenced by the consumption of M. rubrum prey, and these levels quickly stabilized once prey were no longer available. Mesodinium rubrum, in contrast, rapidly assimilated dissolved nitrate and phosphate, with maximum uptake rates of 1.38 pmol N cell(-1) d(-1) and 1.63 pmol P cell(-1) d(-1), respectively. While D. acuminata did not benefit directly from the dissolved nitrate and phosphate, its growth (0.37 +/- 0.01 d(-1)) and toxin production rates for okadaic acid, dinophysistoxin-1 and pectenotoxin-2 (0.1, 0.9 and 2.6 pg cell(-1) d(-1), respectively) were directly coupled to prey availability. These results suggest that while dissolved nitrate and phosphate do not have a direct effect on toxin production or retention by D. acuminata, these nutrient pools contribute to prey growth and biomass, thereby indirectly influencing D. acuminata blooms and overall toxins in the system

    The Sinus Venosus Veno-Venous Bridge Not a septal defect

    Get PDF
    \ua9 2023, Sultan Qaboos University. All rights reserved.This review provides an update on the morphology of the sinus venosus defect. It was earlier believed that a \u27common wall\u27 separated the right pulmonary veins from the superior caval vein. In the sinus venosus defects, this wall was absent. Current evidence shows that the superior rim of the oval fossa, rather than forming a second septum or representing a common wall, is an infolding between the walls of the caval veins and the right pulmonary veins. The sinus venosus defect is caused by the anomalous connection of one or more pulmonary veins to a systemic vein. However, the pulmonary vein(s) retain their left atrial connections, leading to a veno-venous bridge that allows interatrial shunting outside the oval fossa. True atrial septal defects are located within the oval fossa or in the anteo-inferior buttress, while sinus venosus defects, ostium defects and coronary sinus defects are morphologically distinct from them

    A Novel Wayfinding Service for Empowering Physical Activity

    Get PDF
    A wayfinding service for empowering physical activity is presented. The service finds routes that involve multi-modal transportation where walking is always one mode. The service is based on the new concept of multi-modal transportation with multi-criteria walking. A prototype of the service is developed and a new empowerment approach for it is discussed

    What can managers learn online? Investigating possibilities for active understanding in the online MBA classroom

    Get PDF
    Online MBAs have become integral to business schools’ portfolios and the number of MBA students opting for an online version looks set to grow. In the wake of well documented critiques of traditional MBA formats, this expansion prompted us to examine the potential for critically reflexive learning ideals in asynchronous MBA learning environments. Building the Community of Inquiry (CoI) model we elaborate elements of Bakhtin and Shotter’s dialogism to develop the notion of ‘active understanding’ as a means to study an online MBA classroom. We present two illustrative episodes to show how aspects of active understanding may unfold and we point to the role of infrastructure, curriculum and instructor interventions in developing more genuine dialogical exchanges. Our findings suggest that online MBA course designers can learn from CoI approaches to which we add that critically reflexive learning is situationally sensitive; requiring the capacity to create and recognize nuance and difference in the written communication; making the other the focus of learning. We conclude with implications for pedagogy and technology infrastructure

    The importance of endpoint selection: how effective does a drug need to be for success in a clinical trial of a possible Alzheimer's disease treatment?

    Get PDF
    To date, Alzheimer's disease (AD) clinical trials have been largely unsuccessful. Failures have been attributed to a number of factors including ineffective drugs, inadequate targets, and poor trial design, of which the choice of endpoint is crucial. Using data from the Alzheimer's Disease Neuroimaging Initiative, we have calculated the minimum detectable effect size (MDES) in change from baseline of a range of measures over time, and in different diagnostic groups along the AD development trajectory. The Functional Activities Questionnaire score had the smallest MDES for a single endpoint where an effect of 27% could be detected within 3 years in participants with Late Mild Cognitive Impairment (LMCI) at baseline, closely followed by the Clinical Dementia Rating Sum of Boxes (CDRSB) score at 28% after 2 years in the same group. Composite measures were even more successful than single endpoints with an MDES of 21% in 3 years. Using alternative cognitive, imaging, functional, or composite endpoints, and recruiting patients that have LMCI could improve the success rate of AD clinical trials

    Cerebrospinal fluid interferon alpha levels correlate with neurocognitive impairment in ambulatory HIV-Infected individuals

    Get PDF
    HIV-associated neurocognitive disorders (HANDs) continue to be common and are associated with increased morbidity and mortality. However, the underlying mechanisms in the combination antiretroviral therapy (cART) era are not fully understood. Interferon alpha (IFNα) is an antiviral cytokine found to be elevated in the cerebrospinal fluid (CSF) of individuals with advanced HIV-associated dementia in the pre-cART era. In this cross-sectional study, we investigated the association between IFNα and neurocognitive performance in ambulatory HIV-infected individuals with milder impairment. An eight-test neuropsychological battery representing six cognitive domains was administered. Individual scores were adjusted for demographic characteristics, and a composite neuropsychological score (NPT-8) was calculated. IFNα and CSF neurofilament light chain (NFL) levels were measured using enzyme-linked immunosorbent assay (ELISA). There were 15 chronically infected participants with a history of significant immunocompromise (median nadir CD4+ of 49 cells/μl). Most participants were neurocognitively impaired (mean global deficit score of 0.86). CSF IFNα negatively correlated with three individual tests (Trailmaking A, Trailmaking B, and Stroop Color-Word) as well as the composite NPT-8 score (r = −0.67, p = 0.006). These negative correlations persisted in multivariable analyses adjusting for chronic hepatitis B and C. Additionally, CSF IFNα correlated strongly with CSF NFL, a marker of neuronal damage (rho = 0.748, p = 0.0013). These results extend findings from individuals with severe HIV-associated dementia in the pre-cART era and suggest that IFNα may continue to play a role in HAND pathogenesis during the cART era. Further investigation into the role of IFNα is indicated

    Embracing additive manufacture: implications for foot and ankle orthosis design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The design of foot and ankle orthoses is currently limited by the methods used to fabricate the devices, particularly in terms of geometric freedom and potential to include innovative new features. Additive manufacturing (AM) technologies, where objects are constructed via a series of sub-millimetre layers of a substrate material, may present the opportunity to overcome these limitations and allow novel devices to be produced that are highly personalised for the individual, both in terms of fit and functionality.</p> <p>Two novel devices, a foot orthosis (FO) designed to include adjustable elements to relieve pressure at the metatarsal heads, and an ankle foot orthosis (AFO) designed to have adjustable stiffness levels in the sagittal plane, were developed and fabricated using AM. The devices were then tested on a healthy participant to determine if the intended biomechanical modes of action were achieved.</p> <p>Results</p> <p>The adjustable, pressure relieving FO was found to be able to significantly reduce pressure under the targeted metatarsal heads. The AFO was shown to have distinct effects on ankle kinematics which could be varied by adjusting the stiffness level of the device.</p> <p>Conclusions</p> <p>The results presented here demonstrate the potential design freedom made available by AM, and suggest that it may allow novel personalised orthotic devices to be produced which are beyond the current state of the art.</p

    Mathematics difficulties in extremely preterm children : evidence of a specific deficit in basic mathematics processing

    Get PDF
    Background: Extremely preterm (EP, <26 wk gestation) children have been observed to have poor academic achievement in comparison to their term-born peers, especially in mathematics. This study investigated potential underlying causes of this difficulty. Methods: A total of 219 EP participants were compared with 153 term-born control children at 11 y of age. All children were assessed by a psychologist on a battery of standardized cognitive tests and a number estimation test assessing children’s numerical representations. Results: EP children underperformed in all tests in comparison with the term controls (the majority of Ps < 0.001). Different underlying relationships between performance on the number estimation test and mathematical achievement were found in EP as compared with control children. That is, even after controlling for cognitive ability, a relationship between number representations and mathematical performance persisted for EP children only (EP: r = 0.346, n = 186, P < 0.001; control: r = 0.095, n = 146, P = 0.256). Conclusion: Interventions for EP children may target improving children’s numerical representations in order to subsequently remediate their mathematical skills
    • …
    corecore